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ABSTRACT

Over the next decade or more, the Space Shuttle will continue to be

the primary transportation system for delivering payloads to Earth orbit. Al-

though a number of payloads have already been successfully carried by the

Space Shuttle in the payload bay of the Orbiter vehicle, there continues to be a

need for evaluation of the procedures used for verifying and updating the math

models of the payloads.

The verified payload math model is combined with an Orbiter math

model for the coupled-loads analysis, which is required before any payload can

fly. Several test procedures have been employed for obtaining data for use in

verifying payload math models and for carrying out the updating of the payload

math models.

Research under the present grant and a follow-on NASA grant, NAG

9-484, has been directed at the evaluation of test/update procedures for use in

the verification of Space Shuttle payload math models. This report summarizes

three research tasks: a study of free-interface test procedures[l], a literature

survey and evaluation of model update procedures[2], and the design and con-

struction of a laboratory "payload simulator" [3].
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Chapter 1

INTRODUCTION

Over the next decade or more the Space Shuttle will continue to be the

primary transportation system for delivering payloads to Earth orbit. Among

the payloads will be various Space Station modules. Although a number of

payloads have been successfully carried by the Space Shuttle in the payload bay

of the Orbiter vehicle, there is a pressing need for evaluation of the procedures

for verifying and updating the math models of the payloads. Several test

procedures have been employed for obtaining data for use in verifying payload

math models: a free-free modal test, a free-free modal test of the payload

with mass-loaded interfaces[4], a free-free modal test including computation

of residuals[5, 6], a fixed-interface modal test[7], a fixed-interface modal test

supplemented by a modal test of the support structure[8], and an impedance

test[9].

References [4] through [9] discuss some of the advantages and limitations

of the various test methods and indicate that there is no general concensus on

the "best" way to acquire data for use in math model updating. The newest

and least well-known test procedure is the so-called "impedance" procedure

employed by Blair and Vadlamudi on the Hubble Space Telescope[9]. The

theoretical basis for this free-interface test method is explored at some depth

in Ref.[1].
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The payload math model must be combined with the Orbiter math model

for the coupled-loads analysis, which is required before any payload can fly. The

most frequently employed format for the payload math model is the Craig-

Bampton model/10], developed by the Principal Investigator/l 1]. The payload

math model may also be supplied in the form of mass and stiffness matrices.

To provide background for the study of combined test/update procedures and

theirapplication to Space Shuttle payloads, an in-depth survey of fiterature

on the topic of math model updating was conducted. Mathematical descrip-

tions of several methods used to determine the locations of model errors (error

localization methods), and mathematical descriptions of several methods used

to update the analytical math models using experimental data are provided in

aef.[2].

Finally, to provide a test-bed for evaluating various modal test / model

update procedures giving special emphasis to component interface behavior, a

"payload simulator" structure was designed and fabricated. The design of the

simulator, and preliminary modal tests are described in Ref.[3].

The remainder of this report is devoted to brief summaries of Refs.[1]

through [3].



Chapter 2

SYSTEM IDENTIFICATION AND MODEL

UPDATING FOR STRUCTURAL COMPONENTS

(REF.I)

A popular analytical model for representing the dynamics of structural

components, such as Space Shuttle payloads, is the Craig-Bampton model[10,

11]. This model is based on representation of the dynamics of the component

in terms of fixed-interface normal modes and constraint modes. Frequently, a

fixed-interface (fixed-base) modal test is employed to validate the model.* Due

to the difficulties inherent in fixed-base modal testing (cost, flexibility of the

"fixed" base, etc.) alternatives in the form of free-suspension modal testing

are investigated in Ref.[1]. A brief description of the Craig-Bampton modeling

procedure is given first. This is followed by an analysis of frequency response

functions in Craig-Bampton coordinates. Examples are provided for both un-

damped and damped lumped-parameter systems and also for undamped con-

tinuous systems (rods and beams).

•This test does not directly verify the accuracy of the constraint mode terms in the
model.

3
|
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2.1 The Structure Model

Before any dynamical analysis can be performed on a structure, a math-

ematical representation of the said structure must be created. There are ba-

sically two categories of analytical models, namely, continuous models and

discrete-parameter models. A continuous model has an infinite number of

degrees-of-freedom (DOF), and it describes the physical motion of the original

structure exactly. However, this kind of model is governed by a set of partial

differential equations, which may be difficult to work with both analytically

and computationally.

On the other hand, discrete-parameter models are governed by ordinary

differential equations, which can be solved relatively easily. A discrete model

may be constructed by either the lumped-mass approach or the assumed-modes

approach (which includes the finite element method). In lumped-mass models,

the mass of the system is assumed to be concentrated in a small number of

point masses, or in rigid bodies, while springs and dampers are assumed to be

massless. In the assumed-modes approach, a discrete model may be generated

by assuming motion of the form

N

u(x,t) = _ ¢,(x)T/i(t) (2.1)
i=1

where ¢i(x) is an admissible function and N is the number of degrees-of-freedom

to be specified by the analyst. The equations of motion for the resulting N-

DOF model are then derived using Lagrange's equations[12]. This is the basis

of the finite element method.



2.2 Component Modes

At times, a large structure may be treated as a group of components

connected together and then analyzed by a powerful method called the com-

ponent mode synthesis (CMS) method[13]. An example of such a system may

be represented by Fig. 2.1. The physical coordinates of each component (c_ or

/3) may be divided into the boundary coordinates, b, and the interior coordi-

nates, i. The attractiveness of the component mode synthesis method lies in

its ability to preserve the essential dynamical characteristics of the component

while reducing the original set of coordinates considerably. Through a Ritz

transformation, the physical coordinates for the component may be expressed

in terms of a reduced set of modal coordinates.

,r"t ,,"t (t ,r"tI I
IS

Figure 2.1: A two-component cantilever beam model.

The three most commonly used modes, or Ritz vectors, to describe a com-

ponent are: normal modes, constraint modes, and attachment modes. These,

again, are made up of a wide variety of modes such as the fixed-interface, free-

interface and loaded-interface normal modes, and so on. Due to the scope of



this report, only fixed-interface normal modes and constraint modes will be

discussed. Interested readers are referred to Reference[13] for further details.

Fixed-interface normal modes are generated by solving an eigenvalue

problem of the following form while keeping all the interface coordinates fixed.

[kii][¢ii] - [rnii][_,i][hii] = [0] (2.2)

where [kii] is an i × i stiffness matrix, [rnii] is an i × i mass matrix, [¢ii] is the

i × i "normal mode matrix," [Aii] is the i × i diagonal eigenvalue matrix, and

i is the number of interior degrees-of-freedom.

For a 2-component cantilever beam, two fixed-interface normal modes

are illustrated in Fig. 2.2. One of the useful properties of the normal modes

a p

I I
(.)

(b)

Figure 2.2: Fixed-interface normal modes. (a) A two-component cantilever

beam. (b)A normal mode for each component.

is that when they are normalized with respect to the mass matrix [mii], the

following orthogonality relationships hold.

[¢i,]T[mii][¢,i] = [Ii,] , [¢,i]T[kii][¢,i] = [Aii] = diag()q) (2.3)
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where[_ii] is the i x i "normal mode matrix" describedin Eq. (2.2). Now, the

full normal mode matrix is given by

[ [0hi]] (2.4)[_d = [_.]

A constraint mode is generated, on the other hand, by applying a unit

displacement to one of the boundary coordinates statically while holding the

rest of the boundary coordinates fixed. The set of constraint modes may be

defined as[13]

where [Rzs] is the set of reaction forces at the boundary coordinates. From the

lower row-partition of Eq. (2.5)

[_,d = -[k.]-'[k,d

The constraint mode matrix is thus given by

[_1 = [ [Ibb! [Ibb][a,bj] = [ [k,,]-[kii] -_ ]

(2.6)

(2.7)

Another useful property of the two kinds of modes, defined by Eqs.(2.2) and

(2.7), is that they are orthogonal with respect to the stiffness matrix, that is,

[_,l T [k] [&b] = [0,b] (2.8)
[_]r [k][_,1= [0_,1

Several constraint modes are illustrated in Fig. 2.3.

2.3 Frequency Response of an Undamped System in

Craig-Bampton Coordinates

Once a model is generated, the next step is to derive an appropriate

equation of motion to describe the physical behavior of the model. For linear
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I
(.)

.... J i !

(b)

(c)

J

Figure 2.3: Constraint modes. (a) A two-component cantilever beam. (b)

Constraint modes for component a. (c) Constraint modes for component/3.

finite DOF structural systems, the equation of motion takes the following form

[m]_(t) + [c]ff(t) + [klff(t) = f(t) (2.9)

where [m] is a n x n mass matrix, [c] is a n x n damping matrix, [k] is a n × n

stiffness matrix, g is a displacement vector of order n, Y is a force vector of

order n, and n is the total number of degrees-of-freedom of the system.

The component mode synthesis method discussed briefly in preceding

sub-section consists of a wide variety of methods, but the most straightforward

and accurate method is the so-cailed Craig-Bampton method[ill. This method

is specified, for example, in Ref. 10 as one to be used by Space Shuttle payload

contractors. With this method, the component coordinates are separated into

the interior coordinates and the boundary coordinates. The interior coordinates



are then related to a set of fixed-interface normal modes, while the boundary

coordinates are related to a set of constraint modes. This special combination

of modes is also sometimes referred to as "Craig-Bampton coordinates."

For an undamped system, the equation of motion reduces to

[m]_(0 + [k]Z(t) = f(t) (2.10)

The physical coordinates, if, may be represented in terms of modal coordinates,

r_, by the following coordinate transformation

z(t) = [elf(t)= [[¢_] [¢,1] _,(t)

where [O] is the component mode matrix consisting of the constraint mode

matrix, [Oh], and the fixed-interface normal mode matrix, [Oi].

By substituting Eq. (2.11) into Eq. (2.10), we get

[m][¢]_(t) + [k][O]ff(t)-- f(t)

Premultiplying the above equation by [¢]z and using the properties of

Eqs. (2.3) and (2.8), the equation of motion for an undamped vibrating system

becomes

([¢]T[m][¢])_)'(t) + ([o]T[k][¢])ff(t) = [o]Tf(t)

or

[¢i1 T Ira] [¢,1 _, [Oi]r [k] [Oh]

[¢,ff f ]

[¢,]T[k][¢,1 ,,
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To obtain frequency response functions for a component modelled by

Craig-Bampton coordinates, we may assume harmonic motion of the form

q(t) = ?e _"_

and let

Then,

_(t) = Pe'"'

[Mib] ([A.] -- _2 [i.]) y_
(2.13)

Assuming that there are only "reaction forces" at the interfaces, that is,

that F_ = 0, then, from the lower row-partition of Eq. (2.13), we get

Y//= Q2([Aii]- _2[Iii])-'[Mib]_" b

From the upper row-partition of Eq. (2.13),

([Kbb]- n2[Ubbl)g - f_[Ub,]f', = Pb

When combined with Eq. (2.14), the above equation becomes

[([Kbb]- fl:[Mbb])- fl4[Mbi]([A.] - f_2[I.])-'[M,b]]_ = Fb

Alternatively we can write

Y_ [H_b] [Hii] F,.

(2.14)

(2.15)
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For Fi = O, the above expression reduces to

and we have

[Hbb]r'/F = [([Kbb] - f_2[Mbb]) -- ft4[Mb,]([A_i]- _'_2[Iii])-l[Mib]]-I (2.16)

For simplicity, [HYIF] will be used in place of [Hbb]YIF for the rest of this discus-

sion. Furthermore, [Hy/r'] will be used when the matrix obtained is based on

modal coordinates and [Hu/F] will be used when the matrix obtained is based

on physical coordinates. [Hy/f], which is commonly known as a frequency re-
i

sponse function (FRY'), is a particular type of transfer function used to express

a frequency-dependent ratio of an output motion vector (e.g., displacement)

at location a to an applied input force vector at location b. Each element in

the FRF matrix is generally complex, but for undamped systems, the elements

in the FRF matrix are real. Now, in order to have non-zero "reaction forces"

at the interfaces with zero interface displacements, the determinant of [Hy/F]

must be zero. This theory is illustrated by a cantilever beam numerical example

in Section 2.4.2.

The FRF matrix, [Hy/F], developed here is based on the analytical [k]

and [m] matrices. However, a similar [H_]F] may be generated from modal

testing by measuring the displacements at boundary degrees of freedom due

to forces applied at boundary degrees of freedom. After the appropriate FRF

matrix for a free-boundary test has been generated, the natural frequencies,

From Eq. (2.15) we obtain the following expression for [Hbb]Y/F:
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damping factors (for damped systems), and mode shapes of the structural

system may be extracted from the experimental data using a method such as

the polyreference parameter estimation technique[14].

2.4 Numerical Examples- Multiple-Degree-of-Freedom

Systems

While the dynamical responses of a few systems with simple geometry,

like uniform beams and rods, may be solved using continuous models, most

structures must be analyzed using multiple-degree-of-freedom (MDOF) mod-

els. Systems with connected particles and/or rigid bodies in general plane

motion, and finite element models are examples of MDOF models. In the pre-

vious section, a frequency response function matrix of the form [Hy/F] was

developed. However, in order to illustrate graphically a relationship between

a fixed-boundary test and a free-boundary test, another form of frequency re-

sponse function matrix might be more helpful. Let us consider a new frequency

response function matrix of the form [HE�y], which is, indeed, -1[Hbb]V/F. Simi-

larly, [HE�u] will be used when the matrix obtained is based on physical coor-

dinates. The main objective of this section is to show that the poles of [HE/u]

obtained from a system with free boundaries coincide with the natural fre-

quencies of the same system with boundaries fized. In this matrix, the F's are

reaction forces at the boundary degrees-of-freedom, the U's are displacements

at the boundary degrees-of-freedom, and the interior forces are zero, that is,

_=0.



13

2.4.1 A Four-Mass Lumped-Parameter System with Two Interfaces

Consider the following 4-mass system with two boundary degrees-of-

freedom, say ul and u2.

F 1 .___ m m m F a

/

Figure 2.4: Undamped 4-mass system with two interfaces.

The equations of motion for the system in matrix form are

m 0 0 0 fi,(t) k 0-k 0 u,(t)

0 m 0 0 _(t) + 0 k 0-k _(t)
0 0 ,n 0 _3(t) -k 0 2k-k _3(t)

0 0 0 m _,(t) 0-k-k 2k _,(t)

yl(t)
y-_(t)

0

0

(2.17)

Assume harmonic motion of the form

a(t) = Oe'"'

and

and substitute these equations into Eq. (2.17) to obtain the harmonic response

equation

(1 -_) 0 -1 0
0 (1-_) 0 -1

-1 0 (2-A) -1

0 -1 -1 (2-_)

vl
v_
u3
v_

rl/k
F_/k

0

0

(21s)
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where A = rnf_2/k.

When the two boundary degrees-of-freedom of the system are fixed, the

above equations of motion may be reduced to

][ [0]° (2.19)

and the characteristic equation of the clamped-clamped two degree-of-freedom

system is

A2 - 4A + 3 = 0 (2.20)

Next, assume that the system is free. Thus, we can express the "reaction

forces," F1 and F2, in terms of U1 and 0"2 using Eq. (2.18). The result, in matrix

form, is given by

F2/k = (_2-4_+3)[A] U2
(2.21)

where

[A]= [(_3-5A2+6A-I) 1 ]i (Az - 5A 2 + 6A - I)

Now, in order to have non-zero "reactionforces" with zero displacements at

the interfaces, the following condition must be satisfied.

A2 _ 4_ + 3 = 0 (2.22)

Note that Eqs. (2.20) and (2.22) give the same result. This simple exam-

ple illustrates the fact that the poles of [HF/u] obtained from a system with

free boundaries coincide with the natural frequencies of the same system with

boundaries fixed.
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2.4.2 Undamped Finite Element Models

In most instances, finite element models, rather than lumped-parameter

models, are used to describe the dynamic behavior of structures. In many

instances when the original system is too large or has too many degrees-of-

freedom, it is necessary to use some kind of model reduction method such as

the component mode synthesis method discussed in Section 2.2. The theory

derived in Sections 2.2 and 2.3 are based on modal coordinates and will now be

applied to a numerical example to show, as in Section 2.4.1, that the poles of

frequency response function matrix, [HE/y], for a system with free boundaries

are the same as the natural frequencies of the same system with boundaries

fixed.

Dynamical responses of simple structural members based on finite el-

ement representation of the members will now be illustrated. The trans-

verse vibration of a uniform cantilever beam will be used for this purpose.

The Craig-Bampton coordinates outlined in Section 2.2 will be used to de-

fine the structural components. Computer software packages ISMIS[15] and

PC-MATLAB[16] will be used to generate the necessary system parameters

and to perform response simulation of the mathematical model, respectively.

Additional examples are provided in Reference[l].

Consider the transverse vibration of the 4-element cantilever beam in

Fig. 2.5. Figure 2.5(a) displays all 15 degrees-of-freedom before reduction.

After applying the conditions that the right hand end of the beam is fixed and

that the axial freedom is restricted, the number of degrees of freedom of the

system reduces to eight, as shown in Fig. 2.5(b).
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,¢t" ,,It '° ' ',,{"t' ,,It'
,-_ "4"- ,-k ,-4-

A (a]

, ,"t'i ' ff'l , rt'l , ¢'t'1 I
A (u)

Figure 2.5: A four-element cantilever beam. (a) The coordinates before reduc-

tion. (b) The coordinates after reduction.

Based on Craig-Bampton coordinates, degrees-of-freedom 1 and 2 will

be treated as boundary degrees of freedom and will be defined using constraint

modes. The rest of the degrees of freedom will be treated as interior degrees

of freedom and will be defined using fixed-interface normal modes. Material

properties used in this analysis are : E = 10.0 x 106 psi, I = 8.333 x 10 -2 in 4,

A = 1 in s, and p = 2.591 x 10 -4 lb s2/in 4.

Figures 2.6 through 2.9 show the frequency response functions (HF/y)11,

(HF/y)I2(= (HF/Y)2_), and (HF/y)22 for the system. These are actually dy-

namic stiffness plots, for they are plots of "reaction forces" over displacements

at the interface, A. (This is also the reason why there are more zeros than

poles in the plots.) These plots are obtained with the interface free and with

the forces apphed at interface degrees of freedom to keep them from moving,

while the rest of the beam undergoes transverse vibration. Figure 2.9 is an

overlay of Figs. 2.6 through 2.8, and it shows that the poles in all three plots

correspond to the same frequencies. These are the forcing frequencies at which

the beam must be excited in order to obtain non-zero "reaction forces" with
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zero displacementsat the interface. Since there are six interior degrees-of-

freedom, there are six poles in the figure. For easy reference,the valuesof

the six poles are tabulated in Table 2.1 below. Values in the first column are

obtained for the cantileverbeamwith end A fixed. Thesevaluescorrespondto

the natural frequenciesfor a clamped-clampedbeam. On the other hand, the

valuesin the secondcolumn are obtained for the cantilever beam with end A

free. The percentageerrors for the frequenciesare essentiallyroundoff errors

Table 2.1:
(rad/s).

Fixed-InterfaceFrequencies(x 104)

Undamped natural frequenciesfor the cantilever beam exarnple

% ErrorPolesof [HE/y] (xlO 4)
0.079378
0.220683
0.437679
0.828019
1.369407
2.206574

0.079388
0.220615
0.437689
0.828066
1.369499
2.206608

0.013
0.031
0.002
0.006
0.007
0.002
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Figure 2.6: Frequency response function (HF/Y)I] for cantilever beam example.

I0#

10_
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.( 10 4

103
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Figure 2.7: Frequency response function (HFIY)12 = (HF/y)21 for cantilever

beam example.
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Figure 2.8: Frequency response function (HF/Y)_ for cantilever beam example.
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Figure 2.9: Frequency response function for cantilever beam example.
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2.5 Numerical Examples- Undamped Continuous Sys-

tems

All physical structures are, in fact, three-dimensional and, if unrestrained,

capable of translating in the x-, y-, z-directions and rotating about the mutu-

ally perpendicular x-, y-, z-axes. Although the verification theories discussed in

Section 2.3 are expressed in a "discretized" form, they are, indeed, also applica-

ble to continuous systems. In the following example, we will show that the zeros

of determinant of the frequency response function matrix of the form [Hv/F]

obtained from a system with free boundaries coincide with the natural frequen-

cies of the same system with boundaries fixed. To relate the example in this

section to the previous examples, we will also show that the poles of frequency

response function matrix [HE/v] obtained from a system with free boundaries

coincide with the natural frequencies of the same system with boundaries fixed.

Additional examples are provided in Ref.[1].

2.5.1 Transverse Vibration of Linearly Elastic Beams - Fixed-Boundary

Approach

A case having more than one interface boundary constraint will now be

examined. Consider the free vibration of a Bernoulli-Euler beam pinned at

both ends, as shown in Fig. 2.10.

The equation of motion for this system is given by

(EIv")"+ pAil = 0 (2.23)

where E is the modulus of elasticity, I is the area moment of inertia, and A is

the cross-sectional area of the beam.
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Figure .=10: A pinned Bemoulli-Euler beam in transversevibration.

Assumea harmonicmotion of the form

v(x,t) = (2.24)

where w is the undamped natural frequency. Substitute this into Eq. (2.23) to

obtain the differential eigenproblem

(EIV")" - pAw2V = 0 (2.25)

In order to obtain a closed-form solution, the beam is assumed to be uniform,

that is, EI = const., pA = const.. Then,

d4V

dz 4
- A4V = 0 (2.2C _

where

A4 = PAw_
E1

The general solution for Eq. (2.26) is given by

V(x) = C, sinh(Ax) + C2cosh(Az) + C3sin(Ax) + C4cos(Ax) (2.27)
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The boundary conditions to be usedare

V(O) =0 ,

V(L) =0 ,
EIV"(O)=O (2.28)
EIV"(L) =0

From Eqs. (2.27) and (2.28), the characteristic equation for the system is ob-

tained

sin(A_L) sinh(ArL) = 0 (2.29)

This equation determines the natural frequencies of the beam with pinned ends

("fixed" against translation).

2.5.2 Transverse Vibration of Linearly Elastic Beams - Free-Boundary

Approach

We will next consider the forced vibration of a free-free Bernoulli- Euler

beam with a sinusoidal excitation on the right-hand end of the beam as shown

in Fig. 2.11.

tv,(t) v,(t)_,

, !
_ X L .

Fz(t)

Figure 2.11: A free-free beam in transverse vibration.

The appropriate equation for the above system is again Eq. (2.25), but
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the boundary conditions arenow

EIV"(O) = 0 , EIV"(O) = 0 (2.30)
EIV"(L) =0 , EIV'(L) = -F2

Let the forcing frequency (rad/sec) be fl, and let/_4 = _. From Eq. (2.27)

(with E replacing A) and Eqs. (2.30), the transverse displacement of the right-

hand end of the beam is found to be

F2 [sin(EL) cosh(/3L) - cos(EL) sinh(EL)]

V2 - V(L) = EIE3[1 -cos(EL) cosh(EL)]

and a frequency response function of the form, HV2/F2, can be written as

sin(EL) cosh(EL) - cos(ilL) sinh(EL) (2.31)
Hv2/F2 -- H22 = EIEa[1 - cos(EL) cosh(EL)]

Similarly, the transverse displacement of the left-hand end of the beam is found

to be

F2 [sin (/_L) - sinh(EL)]

V_ -- V(O) = EIE3[1- cos(EL)cosh(EL)]

and a frequency response function of the form, HV1/F2, can be written as

HVI/F_ -- H12 =
sin(EL)- sinh(BL)

E IEa[l - cos(EL) cosh(EL)]
(2.32)

Based on the symmetry of the problem, the following results are also true.

sin(EL) cosh(EL)- cos(BL) sinh(BL) (2.33)
Hv1/F_ =--H,, = EIE3[1- cos(EL) cosh(BL)]

and

sin(EL) - sinh(BL) (2.34)
Hv_/f_ -- g2, = EI_3[1 -cos(EL) cosh(BL)]

Expressions (2.31) through (2.34) may then be expressed in a matrix form as

I/1 H12

F2 ] (2.35)
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One very important thing to note at this point is that the frequency

responsefunction matrix, [H], is obtained basedon a free-freecondition. Now,

for a beam with both ends pinned,we haveV1 = V2 = 0, then

0

In order to have a non-zero reaction force at the interfaces, the determinant of

[/-/] must be zero, thus

Hll HI_ = 0
Hn H22

or

HllH22 - H12H21 = 0 (2.36)

After some algebraic manipulations with Eqs. (2.31) through (2.34) and (2.36),

we obtain

sin(BL) sinh(BL) = 0 (2.37)

Equations (2.29) and (2.37) are identical if B = A_.

The analysis shows that instead of a fixed-boundary test, which is dif-

ficult to simulate, the same information can be obtained from a free-free test

regardless of the number of interfaces involved. Hence, for a system with more

than one interface, first we need to determine all the elements of the frequency

response function matrix, [Hv/F], i.e., Hii, i = 1,... ,n; j = 1,... ,n; where n

is the total number of interfaces. It will be helpful to remember that H_j = Hji.

Once the full matrix has been generated, we can then take the determinant of

the said matrix and set it to zero to extract the zeros for the free-free system.

Similarly, a frequency response function matrix of the form, [HF/u], may

be obtained for this system with multiple interfaces. From Eq. (2.35), we obtain
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the following expressions

Vx = HllF1 + H12F2

V2 = n21F1 + n22F2

Solving the above expressions for F1 and F2 in terms of V1 and V2 gives

F2 = H11H2: - HI_H_I -H21 Hll V2

Note that the denominator expression of Eq. (2.38) is identical to Eq. (2.36).

Hence, the poles of frequency response function matrix [HF/ty] obtained for

systems with free boundaries coincide with the natural frequencies of the same

systems with boundaries fixed.

2.6 Remarks and Conclusions

Due to the difficulty in simulating a fixed-base modal test, an alternative

in the form of a free-suspension test is investigated in Ref.[1]. It is found

that the poles of each element of a frequency response function matrix, [HF/u],

obtained for a system with free boundaries coincide with the natural frequencies

of the same system with boundaries fixed.

However, in practical experimental analysis, a frequency response func-

tion matrix of the form [Hu/F] may be generated more readily than [HF/tr].

A similar relationship between the fixed-base and free-suspension systems may

be discovered after taking the determinant of [Hu/F] and setting the result-

ing polynomial to zero. For cases where the determinant may be expressed

explicitly in a fractional form, the zeros in such cases coincide with the natu-

ral frequencies of the fixed-base system. In other cases where the determinant

may only be expressed in a polynomial form, the frequencies corresponding to
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a zeromagnitude of the determinant coincidewith the natural frequencies of

the fixed-base system.

Several additional topics are also addressed in Ref.[1], namely how the

theory illustrated above is affected if the system has closely-spaced frequencies,

and whether mass and stiffness perturbations ("errors") have a significant effect

on the FRF's studied.

The possibility of repeated eigenvalues in a given system has also been

addressed in Ref.[1]. These eigenvalues can be identified from the determinant

plot of [Hu/F] using a Sturm sequence approach; they show up as a "flattening"

in the plot. The more times a certain eigenvalue is repeated, the flatter will be

the curve at that frequency location.

A simple error analysis has been conducted on an undamped 4-mass sys-

tem by varying element stiffness and mass parameters. Results for this analysis

indicate that for an arbitrary mass perturbation, variation in eigenvalues in-

creases for higher stiffness and that for an arbitrary stiffness perturbation, vari-

ation in eigenvalues increases for lighter mass. A second error analysis has been

conducted on an undamped 15-component clamped-clamped beam by varying

the modulus and area of individual components. Results for varying individual

component modulii by 2% indicate that the number of components displaying

higher percentage change in eigenvalues increases for higher modes. Further-

more, the effect of first and last components on eigenvalue variations decreases

for higher modes. Similarly, results for varying individual component areas

by 2% indicate that the number of components displaying higher percentage

change in eigenvalues increases for higher modes. However, the effect of first
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and last componentson eigenvaluevariations increasesfor higher modes. For

a more conclusivededuction, an extensivestudy using perturbation theories

shouldbe carried out in the future to assistin isolation of modeling errors and

updating of mathematical models.

Finally, the material presentedin Ref.[1] is purely analytical, sothe the-

ory developedand illustrated by numerical simulations should be applied to a

physical systemin a modal test to assesstheir usefulness.



Chapter 3

A REVIEW OF ERROR LOCALIZATION AND

MODEL UPDATING FOR STRUCTURAL

COMPONENTS (REF.2)

This report consists of detailed reviews of the major published methods

available for locating modeling errors and for updating mathematical models,

e.g. finite element models, by the use of modal test data. This review of liter-

ature was conducted under the present grant, NASA grant NAG 9-346. The

report also contains the result of numerical evaluations of the methods when

applied for a simplified payload-test-stand simulation. This latter work was

supported by NASA grant NAG 9-484.

From the structures standpoint, the most important question to be asked

in creating a mathematical model for use in a structural dynamics study is,

"What is the purpose of the model?" Due to the size and complexity of present

day aerospace structures, and due to the limited amount of computer resources

available, the structural dynamicist must be able to represent an original struc-

tural system model by a much reduced set of degrees of freedom.

The basic mathematical (or analytical) model is constructed in accor-

dance with assumptions concerning the distribution of mass and stiffness, with

damping usually neglected. The resulting model may, or may not, be reason-

ably representative of the actual structure, and the inaccuracies present in the

analytical model may be due to the approximation of boundary conditions, to

28
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the estimation of material properties, to the lack of damping representation,

and so forth.

In spite of such common shortcomings, the advantages of an analytical

model over an experimental model are evident. In addition to low cost, the an-

alytical model can be modified during the design stage to optimize the dynamic

behavior of the structure without need for a prototype. But the uncertainties

inherent in the analytical modelling technique make model verification a ne-

cessity. Therefore, it is absolutely essential for some form of dynamic testing

to be performed to verify the analytical models.

Substructuring, also referred to as component mode synthesis (CMS),

is frequently used for analyzing the dynamics of aerospace structures. This

is due to the fact that components of an aerospace system (e.g., the Space

Shuttle Orbiter plus payloads) are frequently designed by different engineering

contractors, so there exists a need for communication and assembling accu-

rate component models of reasonable order. Furthermore, dynamic analysis

and testing may be required on system configurations comprised of different

collections of components.

Reviewing the history of CMS studies, we note that several different

methods exist for the representation of a component substructure for the pur-

pose of system component mode synthesis. These methods are categorized by

the way the interface degrees of freedom are treated during the computation

of component normal modes. The four basic categories of CMS are: 1) fixed-

interface methods, 2) free-interface methods, 3) loaded-interface methods, and

4) hybrid-interface methods.
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Usually, a modal test is performed to measure the modal parameters.

The measured natural frequencies can be compared relatively easily with the

calculated ones because these are scalars. As the mode shapes are vectors,

the comparison is more difficult. To address this problem, there are a num-

ber of checks, such as orthogonality and cross-orthogonality checks, the modal

assurance criterion, and visualization of the difference between measured and

analytical mode shapes.

In general, the analytical model will have more degrees of freedom than

the test configuration will have accelerometers. In order to carry out these

checks, the number of analytical degrees of freedom has to be reduced or the

number of measured degrees of freedom has to be extended.

Often differences are observed between the experimental and analytical

results. These differences may be due to experimental errors or due to errors

in the analytical model. Experimental errors may result from wrong measure-

ments, influence of test equipment on the test structure, mismatch of boundary

conditions between the analytical model and the test set-up, and so forth.

In recent years many methods have been developed to localize errors in

the analytical model and to update the analytical model through the use of

vibration test data. The process of adjusting the analytical model to match

test results is called system identification and model updating.

Reviewing the history of system identification and model updating stud-

ies, we can see that there are basically two major categories currently in use. In

the first category, error localization, the task is to localize the major modelling

errors, rather than to update directly. In the second category, model updating,
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the task is to seek a new model that is mathematically optimal and that satisfies

certain physical constraints. In general, statistical parameter estimation, direct

matrix updating, and nonlinear programming optimization updating are three

common ways that are used for model updating. Physical parameters (such

as p, E, I) are updated in statistical parameter estimation and nonlinear pro-

g-ramming updating techniques, whereas, in direct matrix updating techniques,

system or element mass and stiffness matrices are corrected.

A Space Shuttle payload is treated as a component whose math model

is to be interfaced with an orbiter math model. Space Shuttle payload tests

have been conducted with fixed interface supports, with free interfaces and

with loaded interfaces. Validation of the analytical model in the vicinity of

the payload/orbiter interfaces is crucial. The analytical model must accurately

represent the boundary conditions of the test article in order to obtain an

acceptable correlation. Therefore, a fixed-interface analytical model cannot be

updated directly by using free-interface test results.

In this report, recent error localization and model updating methods

are reviewed, but the topics of types of analytical and experimental models,

reconciliation of degrees of freedom of analytical and experimental models, and

correlation between analytical model prediction and modal test data are not

included.

3.1 Error Localization

The primary purpose of the error localization approach is to improve an

analytical model by attempting to locate modelling errors in the model using
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the limited information obtained from an experimental model. This is based

on the assumption that the major modelling errors in the analytical model

axe often isolated rather than distributed, therefore any attempt to correct the

whole analytical model is inefficient.

There are several researchers working on this subject. Ewins proposed

the Error Matrix Method (EMM) to locate anaJytical mass and stiffness ma-

trix errors by using a binomial expansion[17]. Later, he used Singular Value

Decomposition (SVD) to calculate error matrices[18]. These error matrices in-

dicate not only where the differences exist between experimental and analytical

models, but the absolute magnitudes of the errors are also indicated.

The Force Balance Method was proposed by Fissette and Ibrahim [19].

This is based on implementing the dynamic equation, and the elements that

possess a high unbalanced force need to be updated. Lin proposed the Unity

Check Method to determine an analytical stiffness error matrix[20]. This

method uses the cross unity check between the flexibility matrix derived from

the experimental model and the stiffness matrix of the analytical model to lo-

cate errors. Unlike EMM, the error matrices obtained by the Fissette method

or the Lin method indicate only where the modelling differences exist between

the experimental model and the analytical model.

Chou, O'Callahan, and Wu present a new procedure that is used to

spatially localize the experimental and analytical model errors using the struc-

tural element connectivity in the model space[21]. Like EMM, the model error

matrices obtained by the O'Callahan method indicate not only the modelling

differences between the experimental and analytical models, but also the ab-
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solute amplitudes of the errors. Therefore, the corrected system matrices in

the physical space may then be generated by assembling the spatially-corrected

dement mass and stiffness matrices.

In the following sections the above methods will be briefly described.

3.1.1 The Error Matrix Method

The basic theory of the Ewins' Error Matrix Method[17] is to compute

the differences of experimental/analytical stiffness and mass matrices by use of

a binomial expansion or by a singular value decomposition.

Binomial Expansion Technique

First, we will discuss the binomial expansion approach. To begin with

the stiffness case, EMM first assumes that a complete and correct experimental

stiffness matrix, Kt, exists as well as the incorrect analytical one, Ka. (In reality

Kt does not exist, but its inverse may be estimated through measured mode

shapes and frequencies.) Then EMM defines the difference between Kt and Ka

as the stiffness error matrix AK:

AK = Kt- K,, (3.1)

Rearranging and inverting both sides gives

Kt 1 = (K_ + AIr) -1 = (I + If_lAIf)-_If_ _ (3.2)

It can be shown[17] that, by ignoring the second and higher-order terms in the

binomial expansion of a matrix inverse, the error matrix AK can be approxi-

mated as

AK .._ If,,(g: _- Kt_)Ka. (3.3)
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The two "pseudo-flexibility" matrices can be estimated using the corre-

sponding modal data, so that Eq.(3.3) becomes

AK _-, ga(Oagt'_2gP T -Ctfl_2¢T)Ka. (3.4)

where

Ca = analytical mode shape matrix

fla = analytical diagonal frequency matrix

Ct = experimental mode shape matrix

fit = experimental diagonal frequency matrix.

In general, all matrices in Eq.(3.4) are assumed to be of full order (i.e.,

N x N), but there also could be an incomplete set of modes, say m, so that Ca

and ¢_ are N x m, and f_a and _t are m x m.

In practice, the number of degrees of freedom in the experimental model,

say n, is less than that of the analytical model, say N (n < N). In order to

estimate the error matrix in Eq.(3.4), the analytical model must be reduced or

the experimental mode shapes must be expanded. In the case of reducing the

analytical model, Eq.(3.4) becomes

&g R _ Ky(,I, on:_¢_ - ¢,n;-_,I,T)KR. (3.5)

where mode shape matrices Ca and _t are now of order n × m, and superscript

R denotes a reduced analytical model. In a similar manner, the mass error

matrix between the correct experimental mass matrix, Mr, and the incorrect

analytical mass matrix, Ma is [22]

R T
AM R _ M_ (_a_, -- _t_T)M_. (3.6)
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Singular Value Decomposition Technique

In Ref.[18], Lieven and Ewins presented a new method using singular

value decomposition (SVD) to take the pseudo inverse of rank-deficient ma-

trices, which are known as the flexibility and inertance matrices, for both the

analytical and experimental systems. The SVD method is described in detail

in Ref.[2].

3.1.2 The Force Balance Method

The force balance method proposed by Fissette and Ibrahim [19] is based

on the unbalanced forces of the dynamic system that result from the discrepan-

cies between the analytical model and the experimental model. It is assumed

that the test data are correct and that only the analytical stiffness matrix needs

to be updated (i.e., the analytical mass matrix is also correct).

From the dynamic system, we have

(K_ - f_t_Ma)¢t, = El (3.7)

where Ei is the ith error vector or simply the ith vector of unbalanced forces,

and I'/t., Ct, represents the ith test frequency and mode shape. By defining

Dr, = Ka - f_t_,M_, then Eq.(3.7) becomes

D_,ePt, = Ei (3.8)

It can be seen from Eq.(3.8) that if i th row of Dr. is zero, then the

i th element of Ei is also zero. Equation (3.8) shows that the magnitude of

such unbalanced forces is different from one mode to another. However, the



36

distribution of the unbalancedforcesshould be the same, and it is expected

to correspondto the degreesof freedom where modelling errors exist. This

error vector, Ei can be graphically displayed to show the matrix regions where

discrepancies axe found, and this type of information is useful to identify areas

in the analytical model that need further updating.

If we use more than one mode, then Eq.(3.8) can be written in matrix

form as

D,(Ih = E (3.9)

For further applications of this method, see Ref.[19].

3.1.3 The Unity Check Method

In this approach to locating modelling error, Lin [20] assumed that the

test data and the analytical mass matrix are correct. The method checks the

deviation from unity of the product of the flexibility matrix derived from test

data and the analytical stiffness matrix.

If the measured modes and frequencies are assumed to be accurate, the

analytical stiffness matrix will also be accurate if the following unity condition

is satisfied

F,K,, = I (3.10)

where I is a unity matrix and F, is the flexibility matrix of the experimental

model; otherwise Ka is in error. In general, the stiffness matrix is banded

or has strong diagonal terms. Thus, local modelling errors will significantly

affect only those stiffness coefficients directly connected to or closely related to

erroneously modeled areas. These affected stiffness coefficients will influence
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only columnsassociatedwith the affecteddegreeof freedom in the product of

F, and Ka.

Physically, each column of Ka represents a set of nodal forces due to a

unit displacement at one degree of freedom while others are held fixed. From

Eq.(3.10), the difference of the product of FtKo and the unity matrix, 1, can

be expressed by an error matrix E defined as follows:

E = Ftlt'a - I (3.11)

The maximum absolute value of dements in the corresponding column of E

indicates the error for each degree of freedom, that is

e_ - m.axle_jJ (3.12)
$

where the eij's are the elements of E. An ej is a measurement of deflection

errors caused by errors in the jth column of Ko. A large value of ej indicates

the jth degree of freedom is affected by modelhng errors. Equation (3.11) can

be described by another form

E = (Ft - F,,)K,_ (3.13)

Finally, as in Eq.(3.4), we have the following equation

E = (q_,f_-2oT _ ¢_f/_-2OT)K a (3.14)

A complete set of modes, or only the lower modes, can be used in Eq.(3.14)

to identify modelling errors. Note that Eq.(3.14) is a transposed form of the

method proposed by Ojalvo and Pilon [23]
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3.1.4 The Structural Element Connectivity Method

Chou, O'Callahan and Wu[21] proposed a new method to spatially local-

ize the experimental/analytical model errors using a least-squares approach in

modal space. After the system error stiffness and mass matrices are generated,

the updated stiffness and mass matrices may also be obtained.

The eigenequations of motion for an undamped n degree of freedom

system can be written as

g_¢, = Ma¢_12_ (3.15)

where Ca is the order n x m modal matrix containing m mode shapes as

columns. The diagonal elements in 12_ are the corresponding squared natural

frequencies. The system mass matrix M_ (n x n) is an assembly of the element

mass matrices M_,(n x n)

M_ = _ M_, = _ CTm_,C, (3.16)
i i

where C_ (e x n) is the ith element connectivity matrix relating the ith element

mass matrix rn_ (e x e) to the system physical degrees of freedom. The system

stiffness matrix I(_ (n x n) can also be expressed as an assembly of its individual

elements.

=E Ko,=E C?ko,C, (3.17)
i i

If errors exist in the analytical model, and the experimental modal ma-

trix, ¢,, and the squared natural frequency matrix, _, are assumed to be

accurate, then a new eigensolution for the system may be expressed as

(K_ + AK)Ot = (M_ + AM)O,D_ (3.18)
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Finally, the modified systemmassand stiffnessmatrices in the physical

spacecan be generatedby assemblingthe elementmodal error matrices, that

is,

AM = _ CT Ama, Ci (3.19)
i

AK = __, CT Ak,,Ci (3.20)
i

The procedure for evaluating the element modal error matrices Am., and Ak.,

is described fully in Refs.[21] and [21.

3.2 Model Updating

In addition to error localization, much research effort is being devoted

to the topic of model updating. Statistical estimation, direct model updating,

and nonlinear programming optimization are the updating techniques generally

used.

Collins, et.al.[24] first formulated a statistical parameter estimation tech-

nique in an iterative procedure for systematically using measured natural fre-

quencies and mode shapes of a structure to modify the stiffness and mass char-

acteristics of an analytical model. Instead of directly improving the analytical

stiffness and mass matrices, this techniques seeks to modify the physical pa-

rameters or design variables (such as, E, I, p) of an analytical model. Although

this method preserves the connectivity of the original analytical model during

the iteration, the application of this method to real structures is restricted

because its formulation is complex.

The statistical parameter estimation technique has its merits; for ex-

ample, all operations are performed with the full finite element model. This
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provides the information on structure parameter changes required for improv-

ing the analytical model. However, since all operations are performed using the

full model, computational requirements may be very high. Thus, it is important

that only a relatively few iterations be needed for updating.

CORDS[25] is a computer code developed by the Structural Dynamics

Research Corporation (SDRC). It is based on the use of design sensitivity

calculations and optimization to minimize the difference between the test and

analysis results. Design sensitivity data is used to predict the effects of small

changes about the current design point. The objective of the optimization

process is to identify optimum sets of changes that minimize the error between

test and analysis results with minimum changes to the model. This process is

used in an iterative manner and results in rapid and uniform improvement of

test/analysis correlation with reasonable changes to the model.

For direct updating, Berman and Flannely[26] presented a method for

identifying parameters in a hnear, discrete model of a structure by using incom-

plete measured normal modes to modify an analytical model. Later, Baruch

and Itzhack[27] presented a method to obtain an optimal orthogonalization

of measured mode shapes. The method is based on the assumption that the

analytical mass matrix is accurately known and that the measured natural fre-

quencies are accurate. The orthogonalized modes are used to optimally correct

the analytical stiffness matrix.

Baruch[28] employed two different versions for updating the analytical

model. In both versions, measured mode shapes are assumed to be accurate.

In the first version, the mass matrix, which is considered to be known with
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higher confidence,is correctedto meet the orthogonality conditions, and then

the stiffnessmatrix is correctedto satisfy the dynamic equations. In the second

version,the stiffnessmatrix, which is now consideredto be known with higher

confidence,is corrected to meet the orthogonadity conditions, and then the

massmatrix is corrected to satisfy the dynamic equation.

Besides the measured mode shapes and the analytical mass matrix con-

sidered as the reference basis, Baruch[28] also proposed the analytical stiffness

matrix as a reference basis to modify the mode shape and the analytical mass

matrix. In the above three methods, Lagrange multipliers are used and a

closed-form solution is obtained.

Berman and Nagy[29] applied constrained optimization theory by using

measured mode shapes and natural frequencies to improve the analytical mass

and stiffness matrices of a structure. In this approach, measured mode shapes

are assumed to be accurate, and the standard Lagrange multiplier method is

used to solve the optimization problem. Chen and Fu[30], and O'Callahan

and Leung[31], respectively, employed a generalized inverse technique on the

measured mode shapes to optimize the analytical mass and stiffness matrices.

The result is the same as in Ref.[29].

Chen, et.al.[32, 33] introduced a matrix perturbation theory in which the

correct mass and stiffness matrices are expanded in terms of analytical values

plus a modification matrix.

The Error Matrix Method by Ewins (see Sec.3.1.1) also may be con-

sidered as a direct updating method. The error matrices computed by EMM

indicate not only the modelling differences between the analytical and exper-
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imental models, but also the absolute magnitudes of the errors. Therefore,

the error matrices may be added to original erroneous analytical mass/stiffness

matrices to obtain corrected mass/stiffness matrices.

For the direct updating described above, the structure connectivity is al-

ways destroyed. Therefore, Kabe[34] proposed to apply structural connectivity

information to optimally adjust an incorrect analytical stiffness matrix. The

percentage change to each stiffness coefficient is minimized, and the physical

configuration of the analytical model is preserved.

Wei[35, 36] derived an element correction method to modify the ana-

lytical dynamic model. This method employs the structural connectivity to

correct the mass and stiffness matrices simultaneously, while enforcing the or-

thogonality and dynamic equation constraints.

A Linear Quadratic Optimization (LQO) theory containing linearization

and solution of the conventional matrix optimization problem is proposed by

Lapierre and Ostiguy[37]. It ensures that the original connectivity condition of

the structure analyzed is preserved during the updating process.

The methods of Kabe, Wei and Lapierre, which attempt to preserve

the structural connectivity condition, are all based on preserving the zero and

non-zero character of terms of the stiffness matrix. However, connectivity con-

straints based solely on a zero/non-zero element pattern of a stiffness matrix

can be misleading. Certain zero elements in a stiffness matrix result from can-

cellations of the stiffness properties of similar structure elements that do possess

physical connectivity. The actual structural node connectivity obtained dur-

ing the FEM assembly process should be used to constrain the system error
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matrices.

Like EMM, the modelerror matricesobtained by the O'Callahan method

[21]indicatenot only modellingdifferencesbetweenexperimentaland analytical

modelsbut absoluteamplitudes of the errors. This method is usedto spatially

localizethe experimental/analytical model errors using the structural element

connectivity in the model space. Also, the corrected system matrices in the

physical spacemay then be generatedby assemblingthe spatially corrected

element massand stiffnessmatrices. Details of this method may be seenin

Sec.3.1.4.

Besidesthe many updating techniquesdescribedabove, there are some

researchersworking on model updating by the useof nonlinear programming

techniques. Janter, Heylen and Sas[38]proposed the UA (User Acceptance)

model updating schemethat is basedon enabling a user to formulate mathe-

matically his ideasand experienceof what an acceptablemodel should be.

Reference[2] containsa detailed description of the statistical estimation

update procedureof Ref.[24]. The direct model updating proceduresof Berman

and Nagy[29];Baruch and Bar Itzhack[27]; Chen and Fu[30]; O'Callahan and

Leung[31];Chen, Kuo, and Garba[33];and Kabe[34] aredescribedin detail in

Ref.[2]. Here, the details of the designsensitivity update procedureof Ref.[25]

are given to illustrate one approachto model updating.

3.2.1 Design Sensitivity and Optimization Method

The CORDS approach[25]for test/analysis correlation usesdesignsen-

sitivity and optimization methodsin a two-stepprocedure. The first step is to
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calculatedesignsensitivity coefficientsby using MSC/NASTRAN. The second

step usesthe CORDS2 program to read the designsensitivity coefficientsand

apply optimization theory to identify optimum sets of corrections that mini-

mize the error betweentest and analysisresults with minimum changesto the

model.

Calculation of Design Sensitivity Coefficients

Designsensitivity coefficientsdefinethe relationship betweenthe modal

characteristics and design variables. The model's characteristics are modal

frequenciesand mode shapes,and designvariables can be any structural pa-

rameters.

A designsensitivity coefficientrelateshow mucha modal parameterwill

changefor a given changeof a designvariable. This relationship can be ex-

pressedas

0_ . Af_. 0¢, lim (A¢,) (3.21 )

Linear perturbation methods[39, 40] are used to calculate design sensitivity

coefficients.

Knowing the design sensitivity coefficients, the updated values of the

modal parameters can be predicted for a given set of design variable changes.

where

(3.22)

fli = ith updated modal frequency

• _ = ith updated mode shape
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fl._ = ith analytical modal frequency

_, - ith analytical mode shape

rj - flh design variable

ra, = flh analytical design variable

Since the design sensitivity coefficients are calculated using linear per-

turbation theory, they can accurately predict changes to the model's behavior

for small changes of the design variables about the current design state.

The design sensitivity coefficients provide significant insight into the fac-

tors to adjust to improve test/analysis correlations. Their usefulness can be

significantly enhanced by applying optimization theory to determine an "opti-

mum" set of corrections to be applied to the model.

Optimization Theory

An optimum model update is defined as one that minimizes the differ-

ences between test and analysis results with minimum changes to the model.

This can be expressed as minimizing a performance index as follows:

PI = y_(SV Errors) + _-_(DV Changes) (3.23)

where SV stands for state variable (modal parameter) and DV for design

variable.

The definition of optimum model update from Eq.(3.23) can be stated

in two ways. The first term of Eq.(3.23) is used to minimize the difference

between test and analysis results. The second term of Eq.(3.23) states that it

is better to make a small change to accomplish a given reduction in the modal
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parameter error. Therefore, in some cases it is important to minimize error

in the modal parameter regardless of the amount of design variable change.

In other cases, it may be desirable to minimize design variable changes while

accepting moderate modal parameter errors.

The relative importance of minimum error or minimum change is defined

using overall weighting factors. So Eq.(3.23) can be rewritten as

PI = Wsvo x __,(SV Errors) + Wovo x _-'_(DV Changes) (3.24)

Also, individual weighting factors for each modal parameter and design

variable can be defined to allow a detailed control of selected modes or specific

design variables. The complete definition of the performance index, including

overall and individual weighting factors, is

P1 =

+

where

VO X Vlt X

i=1

o,),
Ct )i

(WDvoX {WDvz, × I j- %1})
3=1

(3.25)

Wsvo

Ws VIi

Ct )i

f_(o),
WDvo

WDVI,

= overall weighting factor for the modal parameters

= individual weighting factor for the ith modal parameter

= test value of the ith modal parameter

= updated value of the ith modal parameter

= overall weighting factor for the design variables

= individual weighting factor for the ith design variables
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Further description of the CORDS design sensitivity and optimization

method can be found in Refs.[41, 42, 43].



Chapter 4

PAYLOAD SIMULATOR LABORATORY MODEL

(Ref.3)

To serve as a test bed for evaluating experimental procedures for updat-

ing analytical models of Space Shuttle payloads, a "payload simulator" labo-

ratory model was designed and fabricated. The design and fabrication of this

structure, and the results of preliminary model tests are described in Ref.[3].

Figure 4.1. shows the basic configuration of the model, and Fig.4.2. shows

the model suspended on bungee cords from the laboratory ceiling. Three elec-

trodynamic shakers are attached for multi-input modal testing. This payload

simulator will be used extensively in future studies of model updating.

48
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Figure 4.1: Payload simulator configuration.

Figure 4.2: Laboratory installation of payload simulator.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

This report summarizes three reports that document the research con-

ducted under NASA grant NAG 9-346. Chapter 2 describes methods for using

data from free-suspension modal tests to obtain results typically obtained from

fixed-base modal tests. Specifically, it is demonstrated that the poles of each

element of a frequency response function matrix [HE/u], obtained by testing a

system with free boundaries, coincide with the natural frequencies of the same

system with fixed boundaries.

Chapter 3 summarizes an extensive literature survey on the topics of

error localization and model updating. The methods reviewed are used to

incorporate the results of modal testing to improve the fidelity of finite element

models.

Finally, Chapter 4 briefly describes a laboratory structure, called a pay-

load simulator, that will be used in further research directed toward the devel-

opment of model update methods that will be especially applicable to Space

Shuttle payloads.

Further research is needed on the following topics:

1. Experiments should be performed, using the payload simulator structure,

to assess the feasibility of employing the methods described in Ref.[1] to

5O
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obtain fixed-interface modal properties from free-interface modal tests.

An error analysis should be performed, and appropriate software should

be developed to reduce the free-interface modal test data.

2. Numerical simulations should be performed to compare the various error

localization and model updating procedures described in Ref.[2] and the

strengths/weaknesses of the various approaches should be assessed.

3. An attempt should be made to develop a model update procedure that

takes specific account of the substructure nature of Space Shuttle pay-

loads. The possibility of using this procedure to verify/update analytical

models of Space Station substructures that will be delivered to orbit as

Space Shuttle payloads should be investigated.
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